
APPENDIX 11
INFORMATION/SOFTWARE ENGINEERING, CASE AND ADA TOOLS,

TECHNIQUES AND METHODOLOGIES

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-1

Information/Software A structured methodology is a technique for accomplishing system
Engineering -
Introduction

analysis and design. Structured methodologies attempt to make the

process of developing software or computer systems easier and more

error-free. Information Engineering (IE) uses structured methodologies in

the Life Cycle process. For this guide, Information Engineering is

defined as a set of interrelated disciplines that are needed to build a

computer-based enterprise based on information systems. This document

uses the term software engineering to encompass a set of principles used

for specifying, designing, and programming computer software. A

specific discussion of software engineering and use of the Ada language is

provided in the latter half of this appendix.

CASE Tools - Types CASE tools automate a structured methodology or part of a methodology.

They are generally categorized by the methodology they support, the type

of environment in which they work (real-time versus commercial, object

oriented, etc.), and the phase or phases of the AIS life cycle they

supplement. In software engineering, the application of one or more

CASE tools is almost always required.

As CASE tools proliferated in the marketplace and became more diverse

in capabilities, they were differentiated as being either Upper CASE or

Lower CASE, depending on which phases of the systems life cycle they

best supported.

"Upper CASE" tools primarily function to support the earlier LCMIS

phases (i.e., through Phase I: Mission Need Justification, Concept

Exploration and Definition, and Demonstration & Validation Phases) with

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-2

the generation of initial AIS documentation, models, conceptual data base

designs, etc.

"Lower CASE" tools, on the other hand, primarily function to support

LCMIS Phases II through IV for system development, production and

deployment, and operations and support. "Lower CASE" tools support

the production of efficient, effective applications code, in various

languages and, frequently, associated documentation. Some of the latest

products on the market claim to support the full life cycle, although

independent studies and experience with such products are needed to

substantiate these claims. One such study, Requirements Analysis &

Design Tools Report by the Air Force Software Technology Support

Center (STSC) in April 1992, identified 134 Upper CASE tools for

evaluation. Based on currently available information, no single tool meets

all of the requirements of a Software Engineering Environment (SEE) as

currently defined in the Corps. Obviously, there are many products

available and technical assistance is necessary to determine which is

preferable for a specific AIS requirement. No equivalent "Lower CASE"

study exists at this time.

Moreover, there are numerous CASE tools for supporting different parts

of the structured methodologies. CASE tools are simply tools, and require

the skill and knowledge of the system designers, analysts, programmers,

etc. to use them. They help you get from point A to point B, but they

don't do it for you. You might think of CASE tools as "the Lear Jet of

computing". It will get you from point A to point B

faster, but it would be prudent to know how to fly before crawling into the

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-3

cockpit.

All programming is about algorithms, which are ultimately mathematical

expressions. Almost all CASE tools are mathematically based, and

function by the mathematical analysis of the program's algorithms. (Note:

For a good general explanation of CASE tools, suggested reading is The

Three R's of Software Automation: Re-Engineering, Repository,

Reusability, by Carma McClure, Prentice-Hall, 1992). Most CASE tools

support C and/or C++, and many are now supporting Ada. CASE tools

are the AUTOCAD of Software Engineering. Just as AUTOCAD uses

libraries of symbols and patterns, CASE tools use libraries of models,

metrics and Ada or other language code.

The following information in Table 11-1 lists and describes the generic

capabilities of CASE tools.

Capability Description

Project scheduling Schedules multiple projects, tasks, deliverables
and resources; includes Gantt, Pert and CPM.

Project monitoring Reports the progress of project development;
compares against the project schedule.

Documentation Documents the progress of system development
and describes the system structure and behavior.

Presentation Generates system and model information,
coupled with desktop publishing, graphics and
slide show capabilities to prepare presentations.

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

Capability Description

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-4

Strategic business Updates the corporate or information model
planning / (logical data model).
information
planning

Data modeling Includes data dictionary, entity-relationship and
logical data base programs.

Process modeling Includes data dictionary, data flow diagrams,
and decomposition diagrams. (Activity
modeling)

Data dictionary Collects definitions of processes, flows, data
stores, data structures and entity relationships.

Processing Defines the inputs, outputs, and processes that
definition occur in a model.

Prototype/ Defines the screen, report and menu layout.
simulation Gives the end user a feel for the system prior to

development.

Required data Identifies and documents the definitions and
definition structures of inputs and outputs of a system.

Verification Verifies the completeness and correctness of
data models.

Program/module Describes the functions of individual programs
description or modules.

Program/module Describes the interfaces and hierarchical
architecture structures of lower-level modules and

subroutines.

Data structure Describes the fields (size, type, etc.), records,
definition and interrelationships in the data base or files.

Normalization Either collects the data necessary for
normalization, or provides an automated
normalization process.

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

Capability Description

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-5

Import/export Imports existing data structures into the target
capabilities data dictionary.

Reverse engineering Uses the program structure definitions of DBMS
structures to regenerate the logical data model.

Code generation Generates detailed code from a minimal amount
of instructions or code.

Code translation Translates code from one language to another
with minimal or no loss of function.

Code analysis Provides a guide to the complexity and structure
of systems - the data supports resource
allocation.

Code restructuring Simplifies overly complex or unstructured code.

Data structure Defines the DBMS or file structures.
definition

Screen and report Defines the screens and report layouts for a
definition system.

Sequence of Monitors the execution of batch files.
operations
description

Re-engineering Redesigns or rearchitects the source code for a
system without the system's functionality.

Table 11-1. CASE Tool Capabilities

Many CASE tools have Import/Export capabilities that allow them to

transfer data between tools or systems. However, this process is not

transparent to the user; manual intervention to initiate the process is

generally required.

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-6

Some CASE products claim to offer an integrated set of tools and

techniques that cover all phases of the system development life cycle.

While such a product could theoretically be developed, most products

developed to date have not held up under this claim. However, as the

CASE technology advances, such a capability could be available in the

near future.

Software The purpose of this section of the appendix is to provide the manager with
Engineering -
Introduction

a working level introduction to the concepts of Software Engineering,

Computer Aided Software Engineering (CASE) and the Ada language.

Understanding Software Engineering, CASE, and Ada will be critical to

the overall project success, and will be the foundation upon which the

application is built.

Automation in the Department of Defense (DoD) has, for some time, been

evolving in the direction of recognizing, as well as implementing, the

discipline of Software Engineering. A number of factors have influenced

this movement, not the least of which has been the enormous DoD

investment in software -- primarily, but not exclusively, for weapons

systems. Weapons systems, controlled by precisely engineered and

crafted software, have been a critical "force multiplier," in recent

conflicts. Software Engineering, CASE and Ada have been critical to the

development and maintenance of this software.

Ada Requirement Congress recognized the seriousness of the software development and

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-7

maintenance problem with the passage of Public Law (PL) 101-511 in

1990. Section 8092 of this law states: "Notwithstanding any other

provision of law, after June 1, 1991, where cost effective, all Department

of Defense software shall be written in the programming language Ada, in

the absence of special exemption by an official designated by the

Secretary of Defense." DoD has interpreted the "where cost effective"

clause to mean over the systems life cycle. HQDA affirmed this position

with HQDA Letter 25-92-1, "Implementation of the Ada Programming

Language", 18 September 1992 (which replaced HQDA Letter 25-90-1,

SAB, 16 July 1990, which replaced an even earlier version).

So, regardless of personal preference, use of Ada is the law! (Note: The

Ada Implementation Letter of Instruction (LOI) recognizes very limited

exceptions for nondevelopmental items, i.e. items for which DoD will

incur no direct expense/manpower requirement for applications software

maintenance, including such items as Commercial Off the Shelf (COTS)

software, operating systems, systems utilities, etc., and software

developed for interagency efforts in support of non-DoD customers). At

present, no other language offers Ada's benefits over the systems life

cycle! While you can practice Software Engineering with languages

other than Ada, it is difficult to develop in Ada properly, unless you are

practicing Software Engineering. This, in turn, leads to a discussion of

what is meant by the term Software Engineering.

Software Engineering can be defined as "the disciplined application of

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-8

Software engineering, scientific, and mathematical principles and methods in the
Engineering
Definition

economical production of quality software...the importance of software

engineering is its systematic approach to software development,

implementation, and maintenance throughout the life cycle of the

computer system" (see Reference 1).

The critical mainstay of military success has always been C I - Command,3

Control, Communications, and Intelligence. In more recent times this has

evolved to be C I - Command, Control, Communications, Computers, and4

Intelligence, with the C I capabilities achievable only through the3

advances made possible by computers. This trend has been paralleled in

the world of commerce. If time is money, then information yields time,

and timely information can be invaluable.

Software This leads to the subject of practicing Software Engineering. Anyone can
Engineering
Approach

construct a doghouse in his backyard with some nails, a few 2x4's, and

some 4x8 plywood sheets. Yet, no one would attempt to take this

approach when building a skyscraper. Success in the latter activity

requires careful, detailed design, meticulous planning, sophisticated

construction, and intensive project management; in other words --

engineering.

In terms of AIS project size, a small application (5-10 thousand lines of

code (KLOC)) is equivalent to the doghouse, 10-25 KLOC is like a tool

shed, 25-150 KLOC is a house with a two car garage, and 150-500 KLOC

is a medium sized apartment building. In contrast, the software suite for

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-9

the F-16, the C-17, and other major weapons systems can run 10-20

million lines of code, and even the late STANFINS effort had several

million lines of code in it.

Building anything larger than a tool shed without complete, detailed plans

is a prescription for frustration, failure and unnecessary expense. Yet, it

seems to be taken for granted that the development of complex, critical

information systems requires no more engineering skills, training, tools,

and practices, than assembling a backyard doghouse.

In reality, success in building large and complex software systems

requires careful, detailed design, meticulous planning, sophisticated

construction, and intensive project management -- the basic requirements

of engineering. The current DA/DoD thrust towards enforcement of Life

Cycle Management of Information Systems (LCMIS) principles is

intended to enforce the "engineering" of software, and end the practice of

"inefficient automation!"

Unlike Civil, Mechanical, Architectural, Chemical, or even the "upstart"

Aerospace Engineering, Software Engineering does not have centuries or

even decades of practice behind it. Computers are a new phenomenon,

dating back only to the 1940's. Software Engineering, as a serious topic

of consideration and practice, and as distinct from Computer Science ("A

Scientist builds in order to learn, an Engineer learns in order to build." -

see Reference 2), is largely a product of the 1980's and 90's.

RAAM Concept As noted in other sections of in this guide, the LCMIS phases of a

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-10

Software Engineering effort generally parallel and mirror the phases of a

CIVIL or MILITARY project engineering effort. In engineering weapons

systems, DoD is strongly concerned with a system's Reliability,

Availability, and Maintainability (RAM). For software systems, we can

extend this term to RAAM, where the second A stands for affordability.

The avenue to achieving the second A is two-fold, and encompasses

software reuse, and enforcing software metrics.

Software Reuse The software reuse program within DoD is a serious effort to eliminate the

wasted expense of continually "reinventing the wheel," by software

developers. Using the construction analogy, a builder would not think of

building doors, windows, or trusses by hand, because of the expense, but

instead would use prehung unfinished components which are delivered to

the job site and "stockpiled". In a similar manner, a cost-conscious

software engineer will not reinvent software components if there are

more efficient and/or cost effective ways to create the desired product

using existing capabilities.

Software Reuse - In support of this concept, DoD established a vision and strategy in 1992
DoD Strategy

that embodied four fundamental principles:

€ Focus on reuse in specific "domains" (families of systems,

such as financial management) and exploit those domains to

support "reuse-in-the-large".

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-11

€ Ensure that reuse is treated as an inseparable part of the

software engineering process.

€ Employ reuse-oriented architectures to spur investment in

components to populate the architectures, and

€ Utilize an interconnected network of reuse libraries to drive

the capture, storage and reuse of components within and

across domains.

Thus, the DoD vision for software reuse is to drive the DoD

community from its current "reinvent the software" cycle to a

"process-driven, domain-specific, architecture-centric, library-

based" approach to constructing (vs. "developing") software. As

these cost-driven strategies eventually materialize into DoD and

Army guidance, the Corps will be compelled to demonstrate its

adherence to these principles.

The DoD strategy is intended to capitalize on systematic software

reuse, wherein opportunities for reuse are predefined and a process

for applying those opportunities is fully specified. The reuse

process includes the key elements identified in Table 11-2.

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-12

Element Considerations

Establish Domains Properly define domain boundaries; for DoD, the initial domains
will be based on Business Areas.

Define Reuse Products Identify the information needed for reuse; includes components
that have the greatest potential utility within an application area.

Establish Criteria for Deciding Encourage development of "black box" software components
Ownership industry through changes in acquisition policies and use of

"limited rights" provisions.

Integrate Reuse into Development Evaluate architectures as part of acquisition strategies; favor use of
and Maintenance Process off-the-shelf approaches in prototypes/evaluation; enforcement of

standards; fully integrate reuse objectives in DoD AIS Life Cycle
Management policies and directives, and DoD/MIL-STD software
development standards (e.g., the current provisions in MIL-STD-
498).

Define Model for Business Provide business incentives that reward software developers who
Decisions make reusability a design constraint, stimulate development of

reusable components, and diminish artificial barriers that inhibit
reuse; incorporate government interests or concerns with reuse in
the context of a business case, including use of cost models to
show payoffs.

Define Metrics to Evaluate Reuse Develop and incorporate metrics for evaluating reuse success as an
Success integral part of software measurement; establish program to collect

and refine means of performing such measurement.

Define Component Guidelines for Establish guidelines that outline (1) design characteristics, and (2)
Different Reuse Products evaluation criteria for certifying components; develop goal-

oriented (i.e., flexible) standards for such guidelines.

Identify Technology Base Promote development and application of reuse technologies
Investment Strategy through leverage of industrial R&D base, and direct support more

advanced (state-of-the-art) methods, including provisions for
technology transition; related areas include reuse-oriented
software development tools, use of domain-based knowledge to
identify constraints and relationships affecting reuse strategies, and
information systems security.

Education and Training Indoctrination of required participants into the role of reuse
approaches in software engineering; hierarchical orientation to
reuse from senior managers to programmers; cautious, deliberate
integration of methodology to minimize resistance.

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

Element Considerations

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-13

Provide Near-Term Products and Address all levels of reuse maturity in the organization in such
Services dimensions as motivation/culture, planning for reuse, breadth of

reuse involvement, responsibilities for implementation, reuse
inventory, technology support, and metrics.

Table 11-2. DoD Reuse Strategy Elements

Elements of this strategy are currently being implemented by DoD. For

example, the most recent version of MIL-STD-498 on software

development includes specific provisions for incorporation of reusable

software products. The standard requires that the AIS Software

Development Plan address how a search will be conducted, including

specific criteria, to identify potentially usable products to satisfy AIS

requirements. Appendix B of this standard provides a set of candidate

criteria for this purpose.

In addition to planning for software reuse, the DoD standard also includes

provisions for developers to "identify opportunities for developing

software products for reuse...[and to] evaluate the benefits and costs of

these opportunities." Further, the standard provides an option for the

acquisition agency to require the development of software products

specifically for reuse, if appropriate. Thus, just as with standardization of

data, software reuse policies can lead to standardization of code modules.

Although designing for reuse may incur a higher initial development cost,

substantial savings could be realized over the life of the AIS project.

Software Reuse - This potential for savings has resulted in a significant growth in source

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-14

Repositories code repositories within DoD, other government agencies, and the

industry as a whole. Two of the more well known Ada repositories

include MountainNet (800-444-1458), sponsored by the National

Aeronautics and Space Administration (NASA), and the Defense Software

Repository System (DSRS) (703-536-7485), formerly known as RAPID,

sponsored by the Defense Information Systems Agency (DISA). These

sources are free, except for communications costs, which are born by the

user. Ada code, information, models, etc., may be downloaded at will

from these sources over 9.6 Kb lines. Alternatively, MountainNet

material will be shipped for a nominal handling charge, with the condition

that the recipient return the media (e.g., tape, cartridge, diskette, etc.). In

addition, a recent Internet inquiry, through the World Wide Web, on Ada

sources provided the

information listing summarized in Table 11-3. The information derived

was obtained with the following address scheme:

http://www.yahoo.com/Computers/Languages/Ada

Topic/Item Ancillary Information

ACM SIGAda No additional information provided.

Ada Information Provides information, reports, and resources
Clearinghouse (AdaIC) related to the Ada programming language and

software reuse.

Ada Stuff No additional information provided.

AdaSAGE development Primarily deals with graphics (GKS) and
environment databases (SQL). Versions of AdaSAGE are

available for Unix, MS-DOS and MS
Windows.

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

Topic/Item Ancillary Information

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-15

Adatcl Ada bindings for TCL.

Ada 95RM (Table of Contents) Hypertext version of the proposed ANSI/ISO
Standard (ISO/IEC CD 8652): Programming
Language Ada, Language and Standard
Libraries.v6.0.

Home of the Brave Ada No additional information provided. Note:
Programmers (HBAP) Other information on HBAP Services can be

obtained @ http://lglwww.epfl.ch/Ada

HTML Ada83 LRM Front- No additional information provided.
Page

Lovelace Ada Tutor An Ada tutorial.

Public Ada Library (PAL) No additional information provided. Note:
Other information on PAL can be obtained @
http://web.cnam.fr/Languages/Ada/PAL

The Ada-Belgium No additional information provided.
Organization

GNAT Gnu NYU Ada Translator

FAQ - comp.lang.ada No additional information provided.

Index - Pointers to Ada related No additional information provided.
information

Usenet - comp.lang.ada No additional information provided.

Table 11-3. Ada Repository Information

Additional information on Ada usage and resources can be obtained

through the Internet using Open Text Index at the address:

http://www.opentext.com:8080/omw/simplesearch, with the topic Ada

Language.

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-16

Software Metrics - However, it is not enough merely to generate code, either manually or
General

with CASE tools. The code generated must operate efficiently within the

Applications Execution Environment (AEE). Code efficiency is measured

in terms of software metrics, which may be either management or

technical metrics.

Management metrics usually focus on characteristics associated with the

maintainability of code, such as establishing maximum code module

sizes (e.g., an average programmer cannot comprehend more than 500

lines of code at a time), or maximum "nesting" of subprograms (e.g., an

average programmer gets lost if the nesting is more than five levels deep,

so the tendency is to specify three as a maximum), or establishing

program/subprogram/module naming conventions.

Technical metrics usually focus on characteristics associated with the

efficiency of code, such as eliminating "choke points," selectively

indexing shared files or tables (depending on size and degree of sharing),

or ensuring that the application makes efficient use of the network packet

algorithm and size (particularly important if you are paying for the

volume of message units, since a message unit costs the same whether it is

full, or nearly empty). Most software metrics become embedded in, and

enforced, by CASE tools.

Software Metrics - In addition to general management and technical metrics, there is a need
Reuse

to establish measurements for gauging the effectiveness and efficiency of

software reuse. DoD is examining ways in which to gauge success and

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-17

measure improvement that can serve as a basis for comparison among

alternative approaches to AIS implementation. In creating reuse metrics

procedures and guidelines, the two basic classes for reuse success metrics

are also grouped into either managerial or technical areas. In the near

term, managers primarily need to know if reuse resulted in improved

productivity and reduced risk. For the future, more powerful predictive

metrics are needed. Technically, developers need to focus on specific

asset performance, such as reliability, usability, portability, security,

adequacy of documentation, configuration control, and adaptability.

Software The diagram in Figure 11-1 represents an approximate combination of
Engineering
Environment - A
Model Environment (SEE) -- the upper/lower CASE tools combination. The

capabilities that would be found in the ideal Software Engineering

area within the darker borders represents the "common" or "reusable" code

that would be expected from any automation effort. Such code would be

stored in a corporate code repository, for retrieval as needed.

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-18

DATA FLOW Computer Aided Software PROCESS FLOW
MODELING Engineering and Software MODELING

Upper/Lower

Reengineering Tools

Incremental Intelligent Relationships
Compilers Editors Modelers Normalizers

Entity-

Screen Programming Language Data Base Management Systems Schema

G E
E N
N E
E R
R A
A T
T O
O R
R

SubSchema

GAda Source Version Control Systems R

Data Encyclopedia L

Common Code Libraries - Drivers, etc. T

E

A

I
O
N
A
L

SQL

C

X-Base SQL Ada CORPORATE
Module COMMUNICATION

Extensions S
LIBRARIES

ICONIC/X WINDOWS INTERFACE - DOS/UNIX OPERATING SYSTEM HOST

Figure 11-1. Representative Software Engineering Environment (SEE)

Ada as a Language The Ada language is a child of the 1970's, who grew up in the 1980's,

with the initial standard being adopted in 1983. The most current revision

is being referred to as Ada95. Ada was the first language to be

"engineered" from its inception, and it went through the full engineering

life cycle including "architectural engineering." Ada is based upon, but

not identical to PASCAL, and includes features that are similar to C.

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-19

Ada is not strictly a language in the classical sense like COBOL or

FORTRAN; rather it is the Ada Language System, or ALS. Like a data

dictionary, Ada "remembers" where a data element is used. When a data

element is changed, Ada changes every occurrence of that data element.

Ada is a character oriented language, with similarities to FORTRAN in

the way that it handles numbers (1.5 x E-5, for example). Like

Assembler, Ada is a language which will operate below the operating

system level (e.g., the F-16 doesn't use MS-DOS, and the M1A1 Abrams

tank doesn't have a hard drive).

Ada Limitations Unfortunately, there are significant issues to be faced in considering the

use of Ada, -- the strengths of Ada are also its weaknesses. However,

none of these obstacles are insurmountable for the AIS Project Manager,

given adequate effort in planning/preparation/partnering.

The Ada language standard is very tightly controlled, for this is what

ensures its portability. Ada does not directly address relational database

management systems (RDBMS). SQL, the DoD standard data access

language, is a string oriented language, yet Ada/SQL is the DoD

standard. There are three Ada/SQL "bindings" -- embedded Ada,

"module" Ada, and the SQL Ada Module extensions - Data Language

(SAMe-DL) -- but they are not yet part of FIPS 128, the current

Government SQL standard.

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-20

Normally, a transaction processing (TP) monitor sits between the

application, the operating system, and the DBMS, and handles all

communications interactions between the three. Better known TP

monitors include CICS for IBM/PCM, and DM-IV for Honeywell. There

is no transaction processing (TP) monitor associated with POSIX

(although there is a TP monitor, TUXEDO, emerging from/with the

UNIX standard). This type of limitation is why the STANFINS project

made a significant cost investment to develop an Ada/CICS binding.

There is also no direct interface between Ada and POSIX (or MS-DOS for

that matter); yet Ada/POSIX is the DoD standard. This makes Ada based

transaction processing systems a challenge.

In addition, there is no interface between Ada and a graphical user

interface (GUI - such as MS WINDOWS). X-WINDOWS/Motif is the

standard DoD GUI for POSIX, but there is no standard binding between

Ada/X-WINDOWS (nor MS-WINDOWS for that matter).

Like assembler, Ada can be used to build a "binding" ("binding" is the

name for a linkage between Ada and some other entity) to anything, and

many bindings have been developed. However, there is no standard for

determining the quality of these developments, so caution is the

watchword!

At first, these limitations would seem to weigh against the use of Ada, yet

these constraints should not inhibit Ada usage. Ada itself has no major

shortcoming -- it is well structured, can be very efficient, is a "clean"

language implementation ("Ada is Ada"), and it very portable. Ada was

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-21

designed to "stand alone," and it does; the limitations are in Ada's linkage

to external entities, and these can be built.

Ada as a Prototyping A previously indicated, Ada is not a good prototyping agent for
Agent

transaction processing systems. "Rapid prototyping" requires a nimble

and robust tool which does not require a high degree of technical

expertise. ORACLE's SQL*Forms serves this purpose admirably, as do

Dan Bricklin's DEMO II (DEMO-IT for Windows) and a host of others.

Ada is not an End User language in any way, shape, or form. While the

average individual can master a 4GL tool fairly easily, Ada, a Software

Engineering tool, is a professional programmer's language. Ada

development support must be obtained either from government or

contractor resources. Proper "partnering" development arrangements,

through the local CIM/DIM, a LAB, an FOA, or other federal entity, are

critical to success.

The DEVELOPMENT PHASE of any Ada effort should begin with the

project REUSE and CONFIGURATION MANAGEMENT plans.

Recognizing Ada's weaknesses and adapting the development program to

maximize effective software reuse should be the developer's second

priority (the first priority is to secure possession of all the updated data

and process models). The appropriate direction at this point depends on

the program strategy selected (i.e., Grand Design, Incremental

Development, or Evolutionary), the AIS operating platform (PC or

Host), and the degree of "distribution" of the AIS (Client/Server,

Distributed DBMS, etc.).

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-22

In any case, the first step should be to survey the AIS requirements as set

forth in the project models and the operational plan, and to map these

requirements against Ada's known weaknesses. For example, is this a

screen driven transaction processing system? If so, a screen painter is

needed, but in what operating systems environment? Does this system

interact with an RDBMS? If so, an Ada/SQL binding is needed. Does

this system operate under or within a GUI? If it operates within a GUI

(i.e., open a "window" and activate the application), there is no problem.

However, if it operates under a GUI, (e.g., uses "icons", "radio buttons",

and "drag and drop", etc.) an Ada/GUI binding is needed. Are there

significant dollar ($) handling requirements? Ada formats output like

FORTRAN, in that the decimal point floats and does not align easily.

All these problems are "speed bumps" on the road to success, not

insurmountable roadblocks. So, it is important to survey the repositories.

For example, Ada/SQL bindings do exist; they may or may not be

SAMe-DL compliant, and may require modification or enhancement, but

they are available. A SAMe-DL compiler is available from Intermetrics

which supports ORACLE, SYBASE and INFORMIX.

Direct GUI bindings (to MS WINDOWS, or X-WINDOWS) might have

to be built, permitting "radio buttons," "drag and drop," etc., depending on

the Ada compiler chosen. Screen painters exist, including some in the

public domain. However, there are better screen painters available in the

private sector at a reasonable cost, but you need to be careful of the

operating environment issue. For example, code to drive MS-WINDOWS

is not compatible with X-WINDOWS, just as code to drive a PC monitor

will not drive an X-WINDOWS terminal. However, programs operating

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-23

under a GUI would perform like any other program. Care must be taken

to avoid the development of hardware and/or software version-dependent

code.

STANFINS has already solved the $ editing, commas, and decimal

point issues, and the "round up/down" issue for $ figures. So, you can

retrieve the code, adapt it if necessary, and use it. Remember, just as with

any other form of engineering, knowing what you want to do, before

you start doing it, is critical.

When the Ada-related applications environment issues have been

resolved, then the development team is free to concentrate on the efficient

coding of the AIS. Configuration Management is a critical portion of the

Development Phase. Configuration Management of supporting

documentation began with Phase I, and continued with the addition of

models and, possibly, prototypes in Phase II. This phase adds applications

and RDBMS code to the configuration management scenario.

I-CASE - DoD In the early 1990's, DoD established the Integrated Computer-Aided
Program

Software Engineering (I-CASE) program to improve software quality and

productivity while concurrently reducing the costs and risks associated

with the development of complex information system applications. In

support of this objective, DoD issued a contract to Logicon, Inc. in 1994

to establish a standard software engineering environment (SEE) that

technically supports a formal, repeatable software development process

throughout the entire software development life cycle. Through this

contract vehicle, DoD developers can also purchase run-time software

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-24

components required to test and execute government software applications

developed with the I-CASE SEE.

I-CASE provides an integrated environment to support the development

and maintenance of information system applications. I-CASE supports

process and data models, data standardization, reusable objects,

requirements analysis, design, code generation, testing, quality asurance,

project management, configuration management, automated

documentation, and a host of other functions proven to be critical success

factors for developing and maintaining software applications.

Due to the multitude and diversity of CASE products available, the FP

and PM need to contact the local CIM/DIM for further information on

appropriate CASE tool selection. For example, although IDEF is the

Corps modelling standard, multiple tools can support this methodology.

I-CASE Tool Suite The I-CASE SEE is built around the central LOGICORE Information

Repository which is used by COTS software development tools to store

and exchange information related to the software application being

developed or maintained. The term LOGICORE refers to the hardware

and software components that comprise the SEE. The LOGICORE suite

of integrated software components includes a wide variety of CASE

products and other developmental tools. A summary of the tools currently

available through the I-CASE program is provided in Table 11-4. A more

comprehensive treatment of I-CASE support is provided in reference 6

listed at the end of this appendix.

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-25

LOWER CASE TOOLS

AIS Life Cycle Activity Tools

Ada code generation and APSE Teamwork/Ada
Oracle Pro*Ada Precompiler
Sun Ada Development Environment
Ada/Motif Ada Bindings

GUI development ezX User Interface Management System
Extended Terminal Interface Prototyping Tool (ETIPX)

Physical database design and DDL DBStar Relational Designer
generation DBStar Data Analyzer for Files

DBStar Physical Designer for ORACLE7
DBStar Physical Designer for SYBASE

Reverse engineering
 Procedural code (COBOL to LOGISCOPE Static COBOL Analyzers
 Ada) DBStar Relational Designer
 Relational databases

Testing Teamwork/TestCase
 Includes: Teamwork/SA Interface
 Teamwork/SD Interface
LOGISCOPE Static and Dynamic Analyzers
CMVision
Sun Ada Development Environment
XRunner
DART
RTM
VADSpro

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-26

UPPER CASE TOOLS

AIS Life Cycle Activity Tools

Business analysis Asaedit
Teamwork/IM (information modeling)
Extended Terminal Interface Prototyping (ETIPX)

Requirements analysis Teamwork Project Environment (TPE)
Teamwork/SA (structured analysis)
Teamwork/IM (information modeling)
Asaedit
Requirements and Traceability Management (RTM)

Rapid Prototyping Extended Terminal Interface Prototyping (ETIPX)

Design Teamwork Project Environment (TPE)
Teamwork/SD (structured design)
Teamwork/Ada

Logical database design DBStar Relational Designer

Software reuse Reuse Library Toolkit (RLT)

HORIZONTAL CASE TOOLS

AIS Life Cycle Activity Tools

Project Management:

 Project planning Process Management

 Software size estimation SIZEPLUS

 Software cost estimation GECOMOPLUS

 Database support for SIZEPLUS Raima Database Manager
 and GECOMOPLUS db_QUERY

 Management metrics AutoPLAN II

AutoPlan II

LOGISCOPE tools

Requirements traceability TRM

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-27

HORIZONTAL CASE TOOLS (Cont'd)

AIS Life Cycle Activity Tools

Configuration Management CMVision

Quality Assurance LOGISCOPE tools

Document and presentation Interleaf and SmartLeaf tools
production

RELATIONAL DATABASE MANAGEMENT SYSTEMS

OEM Tools

SYBASE SYBASE SQL Server
SYBASE Data Workbench
SYBASE APT Workbench
SYBASE APT Execute
SYBASE Report Workbench
SYBASE Report Execute
SYBASE Open Client DB Library/Ada

ORACLE ORACLE7 Database Management System
SQL*Plus
SQL*Net
Oracle TCP/IP
Oracle Procedural Option
SQL*Forms/SQL*Menu
SQL*ReportWriter

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-28

ENVIRONMENT MANAGEMENT TOOLS

Function/Activity Tools

Distributed Systems administration:

 UNIX system administration Tivoli Management Database

 System administration for hosts, Tivoli Management Framework (TMF)
 users, and groups

 Resource management; Tivoli/Works
 foundation for other Tivoli tools

 Distributed services for Large Tivoli/Sentry
 configurations

 Software distribution for Tivoli/Courier
 Medium and Large
 configurations

 Network file management Tivoli File System Manager (FSM)

 Monitors computers, bridges, Sun Net Manager
 etc., for Large configurations

Job accounting UNISOL JobAcct

Backup and recovery NetWorker

Security/virus protection VFind

Table 11-4. I-CASE Tool Suite

Software Properly developed, Ada applications can be flexible to meet changing
Engineering -
Summary

needs or requirements, robust to support ease of modification even under

long term maintenance, and efficient under a number of alternative

operating scenarios. Remember that, although Ada may indeed appear to

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-29

cost more "up front," (due to the "bindings" which may have to be

developed), experience indicates that this cost can be recovered over the

system life cycle. Indeed, given an INCREMENTAL, or

EVOLUTIONARY development strategy, savings may show up sooner

rather than later.

Because of the seriousness and complexity of the technical issues

associated with the use of Ada, SQL, CASE, and Software Engineering,

proper selection of a System Developer is critical. Adherence to the

criteria set forth in Chapter 3 will go a long way towards ensuring a

successful technical project effort.

The remainder of this appendix initially describes several major structured

methodologies. It presents the tasks, in a matrix format, that take place

within and across the LCMIS phases, and indicates the methodologies that

apply to the phases.

This appendix also describes the generic capabilities of Computer-Aided

Software Engineering (CASE) tools. CASE tools have simplified and

advanced the use of structured methodologies for software engineering by

automating these otherwise tedious manual processes. Several good and

not so good -- automated tools exist. Some are task specific, while others

are fully integrated and support a broad spectrum of the AIS life cycle. It

is not the purpose of this appendix to describe everything that is available

on the market for CASE tools. However, a broad spectrum of CASE tool

support can be obtained through the DoD Integrated Computer-Aided

Software Engineering (I-CASE) contract. More information on the I-

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-30

CASE support will be addressed later in this appendix. Detailed questions

regarding CASE tool selection applicable to a specific AIS project should

be directed toward the local CIM/DIM office.

CASE Tools - In 1991, DoD completed an independent assessment evaluating the
Overview of
Methodologies

ongoing data and process modeling efforts being conducted throughout

DoD. This study found that no methodology or tool exists that adequately

supports all information system development functions across the entire

life cycle (Reference Appendix 1, document entitled "Independent

Validation and Certification of Data and Process Modeling Methodologies

and Tools: Report of Findings," 20 December 1991).

When comparing structured methodologies, keep in mind that they can do

different things, or they can do the same things differently. Therefore, it

is important to distinguish what a methodology is from how it does it.

Following is a brief overview of selected major structured analysis

methodologies.

€ CIM Process Guide.

The Corporate Information Management (CIM) Process Guide

methodology supports the planning and concept development phases

of the life cycle. This methodology is intended to be a tool for

upper level managers, due to its emphasis on long-range planning

and its non-technical nature.

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-31

Major Strength: Easy to read due to its top-

down design.

Major Weakness: Does not provide explicit

techniques to accomplish

some of the steps.

€ Finkelstein's Information Engineering Methodology.

Finkelstein's methodology is targeted to managers at all levels to

accomplish strategic, tactical and operational planning. It uses

unique symbols to indicate very specific relationships between data.

Major Strength: Helps organizations define

their information needs with

strategic models.

Major Weakness: Does not include process

modeling.

€ IDEF Methodology

IDEF is aimed at systems analysts with some software engineering

experience. It provides a snapshot of the current enterprise

environment, identifying and documenting data requirements from a

process perspective. It also identifies data elements and their

relationships within the enterprise.

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-32

Major Strength: Describes the current system

and encourages the

prioritization of processes

and identification of technical

and financial constraints.

Major Weakness: Weak at the strategic and

tactical planning levels.

Note: IDEF is a DoD standard methodology.

€ TIP Methodology

The Technical Improvement Products (TIP) methodology includes

project management, business information planning, business

analysis and requirements definition, relational data modeling,

structured systems design, and program analysis and design. The

TIP methodology is intended to provide integratedtechniques to

support the full life cycle of information systems development.

Major Strength: It follows the DoD LCM

phases, and explains the

model's relationship to the

entire development effort.

Major Weakness: It does not support the

Deployment and Operations

phases.

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-33

€ James Martin's Information Engineering Methodology.

Martin's methodology is targeted to managers at all levels, as well as

to users and system analysts. It is a complex methodology, with

very specific notations regarding assumptions, constraints and data

relationships.

Major Strength: The methodology is very

strong in strategic, tactical,

and operational modeling.

Major Weakness: It is weak in supporting the

Development Phase.

€ Nijssen's Information Analysis Methodology (NIAM).

The Nijssen methodology provides an exceptionally strict procedure

for designing data bases. It is aimed at systems analysts working

closely with the users.

Major Strength: Its greatest strength involves

the development of quality

conceptual data base designs.

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-34

Major Weakness: It neglects the following

phases: Need Justification,

Concepts Development,

Deployment and Operations.

€ Yourdon/DeMarco's Structured Analysis and Design Methodology.

The Yourdon/DeMarco methodology is intended for systems

analysts to use in analyzing and designing information systems. It

breaks down complex system processing requirements into logical

subparts.

Major Strength: It is strong in the areas of

analysis, design and

development.

Major Weakness: It does not provide

techniques to accomplish

strategic planning for senior

managers or tactical planning

for mid-level managers.

€ Object-Oriented Methodologies

Although different object-oriented techniques exist, few have been

integrated into a consolidated methodology. Object-oriented

programming languages differ, and the various models do not

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-35

always agree on what an object is. This methodology is best used

by programmers, data base designers and systems analysts, but not

managers.

Major Strength: It combines processes and

data into one model, ensuring

that the processes support the

data and the data support the

processing requirements.

Major Weakness: It is incomplete and is met

with a lack of agreement in

the object-oriented

community.

IE Methodologies The following matrices are from the document, "Independent Validation
and LCMIS Phases

and Verification of Data and Process Modeling Methodologies and

Tools", cited in the beginning of this appendix. They show how the

structured methodologies can be used to support the phases of LCMIS.

The methodologies were evaluated by first comparing the

Rationale/Comments for each criterion across all of the methodologies,

and then assigning a score based on the level of support relative to each

other. Comparisons were made within each phase of the AIS Life Cycle,

as well as across all phases of the AIS Life Cycle.

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-36

The following scores were used:

0 = Does not support/provide this criterion

1 = Below average support

2 = average support

3 = above average support

Use these charts to screen the types of methodologies available and what

they support within the life cycle. Remember that this field is changing

rapidly, and that frequently vendors may have upgraded their individual

tools to increase the range of support to various methodologies.

Appendix 11 - Information Engineering, CASE and Ada Tools,

* (n) - Assigned weight

Legend: 0 - Does not support/ 2 - Average support
provide this criteria

1 - Below average support 3 - Above average support

USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-37

Comparison of All Methodology Scores Within Life Cycle Phases Criteria

Within Life Cycle Phases Criteria Process Finkel- James Yourdon/ Object
CIM

Guide stein IDEF TIP Martin Nijssen DeMarco Oriented

MISSION NEED JUSTIFICATION PHASE

Describe existing functional concept and 2 2 3 2 2 0 2 1
capabilities (2)*

Identify mission, deficiencies, or opportunities (2) 1 3 2 3 3 0 1 0

Evaluate impact of deficiencies on the 1 3 2 3 2 0 0 0
performance of the mission (2)

Optimize functional processes and procedures (3) 3 0 3 2 2 0 2 1

Identify the essential functional, technical, and 2 2 2 3 0 0 1 0
financial constraints and assumptions which may
impact potential alternative solutions (2)

Identify requirements for standardization, 2 0 2 3 0 0 1 0
integration, or interoperability with other AIS (2)

Appendix 11 - Information Engineering, CASE and Ada Tools,

Within Life Cycle Phases Criteria Process Finkel- James Yourdon/ Object
CIM

Guide stein IDEF TIP Martin Nijssen DeMarco Oriented

* (n) - Assigned weight

Legend: 0 - Does not support/ 2 - Average support
provide this criteria

1 - Below average support 3 - Above average support

USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-38

CONCEPT EXPLORATION AND
DEFINITION PHASE

Identify and prioritize functional requirements (3) 3 3 1 3 2 0 1 1

Assess alternative functional concepts for 2 2 3 3 2 0 0 0
performing needed mission activities (2)

Assess alternative technical concepts and 0 0 2 0 2 0 0 0
architectures that could satisfy the required needs
(1)

Select the best program concept to satisfy the 3 0 2 2 1 0 0 0
mission need based on the results of combining
the evaluation of functional and technical
alternatives with their related costs and benefits
(1)

Evaluate and select the appropriate development 3 0 0 2 2 0 0 0
and acquisition strategies to implement the
recommended program (1)

Appendix 11 - Information Engineering, CASE and Ada Tools,

Within Life Cycle Phases Criteria Process Finkel- James Yourdon/ Object
CIM

Guide stein IDEF TIP Martin Nijssen DeMarco Oriented

* (n) - Assigned weight

Legend: 0 - Does not support/ 2 - Average support
provide this criteria

1 - Below average support 3 - Above average support

USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-39

Plan for the design, development, testing, 0 3 1 0 2 0 1 0
deployment, maintenance, and modernization of
the proposed AIS (1)

Plan for hardware and software needs (1) 0 1 2 1 2 0 0 0

Develop the Operational Concept Description 1 0 2 2 2 0 3 0
(OCD) (2)

Appendix 11 - Information Engineering, CASE and Ada Tools,

Within Life Cycle Phases Criteria Process Finkel- James Yourdon/ Object
CIM

Guide stein IDEF TIP Martin Nijssen DeMarco Oriented

* (n) - Assigned weight

Legend: 0 - Does not support/ 2 - Average support
provide this criteria

1 - Below average support 3 - Above average support

USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-40

DEMONSTRATION AND VALIDATION
PHASE

Base the design upon the OCD (3) 0 2 2 2 2 2 2 2

Integrate any prototyping or demonstration 0 0 2 2 2 1 0 2
results into the design (3)

Select modern development technologies to be 0 1 2 0 2 0 1 0
used in the development of the AIS (2)

Factor the AIS maintenance and logistic 0 0 0 0 0 0 0 0
requirements into the design (2)

Develop security specifications based on 0 0 0 0 0 0 0 0
identified security requirements and potential
threats and vulnerabilities (2)

Refine, prioritize, and validate the functional and 0 2 2 1 2 0 2 1
technical requirements (3)

Use DoD standard data elements and data codes 0 0 0 0 0 0 0 0
(3)

Appendix 11 - Information Engineering, CASE and Ada Tools,

Within Life Cycle Phases Criteria Process Finkel- James Yourdon/ Object
CIM

Guide stein IDEF TIP Martin Nijssen DeMarco Oriented

* (n) - Assigned weight

Legend: 0 - Does not support/ 2 - Average support
provide this criteria

1 - Below average support 3 - Above average support

USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-41

DEVELOPMENT PHASE

Program (3) 0 2 1 2 3 0 2 2

Develop databases (3) 0 2 2 0 2 3 1 2

Operationally test the AIS to validate that it meets 0 0 0 0 0 0 0 1
the functional user requirements (3)

Plan for deployment, training, operations, 0 1 0 0 0 0 1 0
maintenance, logistic support, and continuity of
operations (1)

Satisfy standardization and interoperability 0 0 0 0 0 0 1 0
requirements (3)

Develop system support documentation (2) 0 3 1 2 2 0 2 0

Control the end products as configuration items 0 3 0 0 0 0 0 1
(3)

PRODUCTION AND DEPLOYMENT
PHASE

Appendix 11 - Information Engineering, CASE and Ada Tools,

Within Life Cycle Phases Criteria Process Finkel- James Yourdon/ Object
CIM

Guide stein IDEF TIP Martin Nijssen DeMarco Oriented

* (n) - Assigned weight

Legend: 0 - Does not support/ 2 - Average support
provide this criteria

1 - Below average support 3 - Above average support

USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-42

Develop procedures for collecting and evaluating 0 0 1 0 1 0 1 0
benefits, correcting AIS malfunctions, responding
to functional user needs, and assuring continuous
use of approved security safeguards (2)

OPERATIONS AND SUPPORT PHASE

Implement procedures for collecting and 0 0 1 0 0 0 1 0
evaluating benefits, correcting AIS malfunctions,
responding to functional user needs, and assuring
continuous use of approved security safeguards
(3)

Conduct a post-deployment operational 0 0 0 0 0 0 0 0
assessment to validate that the mission need has
been satisfied, the operational support of the AIS
is acceptable, the AIS is affordable, and its
benefits and performance are within acceptable
limits (2)

Develop short-term modernization plans, if 0 2 2 0 0 0 0 0
required (1)

Appendix 11 - Information Engineering, CASE and Ada Tools,

* (n) - Assigned weight

Legend: 0 - Does not support/ 2 - Average support
provide this criteria

1 - Below average support 3 - Above average support

USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-43

Appendix 11 - Information Engineering, CASE and Ada Tools,

* (n) - Assigned weight

Legend: 0 - Does not support/ 2 - Average support
provide this criteria

1 - Below average support 3 - Above average support

USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-44

Comparison of All Methodology Scores Across Life Cycle Phases Criteria

CRITERIA CATEGORY CIM Yourdon/ Object
Across Life Cycle Phases Criteria Process Finkel- James DeMarco Oriented

Guide stein IDEF TIP Martin Nijssen

USER FRIENDLINESS

Amount and kind of facilitation provided with/for 1 1 2 3 1 0 2 1
the methodology. (3)*

TRAINING

How much required? (3) 1 1 1 2 1 1 3 1

How much provided? (Comes with the product?) 2 1 2 2 1 0 1 0
(2)

How much available? (Can be purchased 2 2 1 2 2 0 2 0
separately?) (1)

Appendix 11 - Information Engineering, CASE and Ada Tools,

CRITERIA CATEGORY CIM Yourdon/ Object
Across Life Cycle Phases Criteria Process Finkel- James DeMarco Oriented

Guide stein IDEF TIP Martin Nijssen

* (n) - Assigned weight

Legend: 0 - Does not support/ 2 - Average support
provide this criteria

1 - Below average support 3 - Above average support

USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-45

FLEXIBILITY

Prototyping capabilities? (3) 0 0 2 2 0 1 0 1

Configuration control of products? (4) 0 2 1 1 0 0 0 0

MODELS

Strategic planning model? (4) 2 3 1 2 3 0 0 1

Data diagrams? (e.g. ERD, data model, data 2 3 2 3 3 2 0 2
design). (4)

Process diagrams? (e.g. functional flow and data 2 0 1 3 2 2 2 1
flow diagrams, structure chart). (4)

View of the models from Zachman's architecture? 2 1 2 2 3 1 1 1
(2)

Appendix 11 - Information Engineering, CASE and Ada Tools,

CRITERIA CATEGORY CIM Yourdon/ Object
Across Life Cycle Phases Criteria Process Finkel- James DeMarco Oriented

Guide stein IDEF TIP Martin Nijssen

* (n) - Assigned weight

Legend: 0 - Does not support/ 2 - Average support
provide this criteria

1 - Below average support 3 - Above average support

USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-46

INTEGRATABILITY

Interface with/include project management 2 1 1 3 0 0 1 0
functions? (2)

Use of a central data repository? (4) 2 3 2 2 2 1 2 2

Interface with other tools or methodologies? (4) 1 1 1 1 2 0 0 2

Appendix 11 - Information Engineering, CASE and Ada Tools,

USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-47

 Figure of Merit The Figure of Merit provides one overall
score for each methodology to be used for
comparison purposes. The Figure of Merit
table gives the total score for each
methodology evaluated by criteria category
(i.e., Within Life Cycle Phases Criteria and
Across Life Cycle Phases Criteria). The
scores were computed by multiplying the
score earned by each methodology by the
weight of the criterion, and then adding
these for each criteria category.

Methodologies Figure of Merit (FOM) Table

Criteria Category Process Finkel- James Yourdon/ Object
CIM

Guide stein IDEF TIP Martin Nijssen DeMarco Oriented

Need Justification Phase Subtotal 25 20 31 34 20 0 16 5

Concept Exploration and Definition Phase 21 17 20 24 23 0 10 3
Subtotal

Demonstration and Validation Phase Subtotal 0 14 22 15 22 9 14 15

Development Phase Subtotal 0 28 11 10 19 9 17 18

Production and Deployment Phase Subtotal 0 0 2 0 2 0 2 0

Operations and Support Phase Subtotal 0 2 5 0 0 0 3 0

Appendix 11 - Information Engineering, CASE and Ada Tools,

Criteria Category Process Finkel- James Yourdon/ Object
CIM

Guide stein IDEF TIP Martin Nijssen DeMarco Oriented

USACE LCM Manager's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-48

WITHIN LIFE CYCLE PHASES CRITERIA 46 81 91 83 86 18 62 41
TOTAL

User Friendliness Subtotal 3 3 6 9 3 0 6 3

Training Subtotal 9 7 8 12 7 3 13 3

Flexibility Subtotal 0 8 10 10 0 3 0 3

Models Subtotal 28 26 22 36 38 18 10 18

Integratability Subtotal 16 18 14 18 16 4 10 16

ACROSS LIFE CYCLE PHASES CRITERIA 56 62 60 85 64 28 39 43
TOTAL

GRAND TOTAL 102 143 151 168 150 46 101 84

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manger's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-49

Key References - The following references have been cited in this appendix:
Appendix 11

1 - Software Engineering Methods, Management, and CASE
Tools, by Jay Sodhi, TAB Books, 1991.

2 - "The SEE Education Program: The Challenge of Teaching
Future Software Engineers," by Norman E. Gibbs,
Communications of the ACM, Volume 32, Number 5, Page
594.

3 - The Three R's of Software Automation: Re-engineering,
Repository, Reusability, by Carma McClure, Prentice-Hall,
1992.

4 - "DoD Software Reuse Initiative - Vision and Strategy," July
15, 1992.

5 - MIL-STD-498, Military Standard - Software Development
and Documentation, 5 December 1994.

6 - Integrated Computer-Aided Software Engineering (I-CASE)
Contract Guide, HQ Standard Systems Group (AFMC), I-
CASE System Program Office, April 19, 1995.

Appendix 11 - Information/Software Engineering, CASE and Ada Tools,

€€
€€
USACE LCM Manger's Guide - Version 2.0 March 31, 1996
Appendix 11 Page A11-50

Appendix 11 - Topic Index

Ada as a Language A11-18

Ada As A Prototyping Agent A11-21

Ada Limitations A11-19

Ada Requirement A11-6

CASE Tools - Overview of Methodologies A11-30

CASE Tools - Types A11-1

Figure of Merit A11-47

I-CASE - DoD Program A11-23

I-CASE Tool Suite A11-24

IE Methodologies and LCMIS Phases A11-35

Information/Software Engineering - Introduction A11-1

Key References - Appendix 13 A11-49

RAAM Concept A11-10

Software Engineering - Introduction A11-6

Software Engineering - Summary A11-28

Software Engineering Approach A11-8

Software Engineering Definition A11-8

Software Engineering Environment - A Model A11-17

Software Metrics - General A11-16

Software Metrics - Reuse A11-17

Software Reuse A11-10

Software Reuse - DoD Strategy A11-10

Software Reuse - Repositories A11-14

